Acceleration capability in elite sprinters and ground impulse: Push more, brake less?
نویسندگان
چکیده
Overground sprint studies have shown the importance of net horizontal ground reaction force impulse (IMPH) for acceleration performance, but only investigated one or two steps over the acceleration phase, and not in elite sprinters. The main aim of this study was to distinguish between propulsive (IMPH+) and braking (IMPH-) components of the IMPH and seek whether, for an expected higher IMPH, faster elite sprinters produce greater IMPH+, smaller IMPH-, or both. Nine high-level sprinters (100-m best times range: 9.95-10.60s) performed 7 sprints (2×10 m, 2×15 m, 20 m, 30 m and 40 m) during which ground reaction force was measured by a 6.60 m force platform system. By placing the starting-blocks further from the force plates at each trial, and pooling the data, we could assess the mechanics of an entire "virtual" 40-m acceleration. IMPH and IMPH+ were significantly correlated with 40-m mean speed (r=0.868 and 0.802, respectively; P<0.01), whereas vertical impulse and IMPH- were not. Multiple regression analyses confirmed the significantly higher importance of IMPH+ for sprint acceleration performance. Similar results were obtained when considering these mechanical data averaged over the first half of the sprint, but not over the second half. In conclusion, faster sprinters were those who produced the highest amounts of horizontal net impulse per unit body mass, and those who "pushed more" (higher IMPH+), but not necessarily those who also "braked less" (lower IMPH-) in the horizontal direction.
منابع مشابه
Built for speed: musculoskeletal structure and sprinting ability.
The musculoskeletal structure of the foot and ankle has the potential to influence human sprinting performance in complex ways. A large Achilles' tendon moment arm improves the mechanical advantage of the triceps surae but also produces larger shortening velocity during rapid plantarflexion, which detracts from the force-generating capacity of the plantarflexors. The lever arm of the ground rea...
متن کاملAn Investigation of the Influence of Bilateral Deficit on the Counter-movement Jump Performance in Elite Sprinters
The purpose of the present study was to investigate the bilateral deficit (BLD) in elite sprinters and examine the relationship between the BLD and sprint start performance. Twelve male elite sprinters (age: 22.41±3.39 years, 100m personal best: 10.82±.25s) performed sprint starts, twoand one-leg counter-movement jumps (CMJ). A system of eight CCD cameras with a frequency of 200 Hz was used for...
متن کاملKinematic and kinetic comparisons of elite and well-trained sprinters during sprint start.
The purpose of this study was to compare the main kinematic, kinetic, and dynamic parameters of elite and well-trained sprinters during the starting block phase and the 2 subsequent steps. Six elite sprinters (10.06-10.43 s/100 m) and 6 well-trained sprinters (11.01-11.80 s/100 m) equipped with 63 passive reflective markers performed 4 maximal 10 m sprint starts on an indoor track. An opto-elec...
متن کاملMorphologic and kinematic characteristics of elite sprinters.
The purpose of the study was to ascertain the basic morphologic and kinematic characteristics of elite sprinters. The sample included 24 sprinters, with times over a 100 m distance between 10.21 s and 11.19 s. Morphologic characteristics of the sprinters were measured with a test battery of 17 measures, obtained according to the methodology prescribed by the International Biologic Programme (IB...
متن کاملAn analysis of the rebound of the body in backward human running.
Step frequency and energy expenditure are greater in backward running than in forward running. The differences in the motion of the centre of mass of the body associated with these findings are not known. These differences were measured here on nine trained subjects during backward and forward running steps on a force platform at 3-17 km h(-1). In contrast to previous reports, we found that the...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of biomechanics
دوره 48 12 شماره
صفحات -
تاریخ انتشار 2015